Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 266: 116138, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219658

RESUMO

As a new approach to the management of inflammatory disorders, a series of chromone-based derivatives containing a (carbamate)hydrazone moiety was designed and synthesized. The compounds were assessed for their ability to inhibit COX-1/2, 15-LOX, and mPGES-1, as a combination that should effectively impede the arachidonate pathway. Results revealed that the benzylcarbazates (2a-c) demonstrated two-digit nanomolar COX-2 inhibitory activities with reasonable selectivity indices. They also showed appreciable 15-LOX inhibition, in comparison to quercetin. Further testing of these compounds for mPGES-1 inhibition displayed promising activities. Intriguingly, compounds 2a-c were capable of suppressing edema in the formalin-induced rat paw edema assay. They exhibited an acceptable gastrointestinal safety profile regarding ulcerogenic liabilities in gross and histopathological examinations. Additionally, upon treatment with the test compounds, the expression of the anti-inflammatory cytokine IL-10 was elevated, whereas that of TNF-α, iNOS, IL-1ß, and COX-2 were downregulated in LPS-challenged RAW264.7 macrophages. Docking experiments into the three enzymes showed interesting binding profiles and affinities, further substantiating their biological activities. Their in silico physicochemical and pharmacokinetic parameters were advantageous.


Assuntos
Anti-Inflamatórios , Inibidores de Lipoxigenase , Ratos , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Lipoxigenase/química , Ciclo-Oxigenase 1/metabolismo , Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Araquidonato 5-Lipoxigenase/metabolismo , Relação Estrutura-Atividade
2.
Bioorg Chem ; 141: 106874, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769524

RESUMO

New series of substituted 2-alkoxycyanopyridine derivatives were synthesized and evaluated for their in vitro and in vivo anticancer activities. Comparing the evaluated activities against cancer cell lines to the broad-spectrum anticancer doxorubicin, and the kinase inhibitor sorafenib, compounds 3a, 4b, 4c, 7a, and 8d demonstrated superior anticancer efficacy with elevated safety profiles and selectivity indices, particularly against MCF7 breast cancer. For exploration of their mechanism of action, assays for inhibition of EGFR, HER2 kinase, and DHFR were performed. The promising synthesized compounds exhibited potent dual kinase EGFR/HER2 inhibitory activity with IC50values of 0.248/0.156 µM for 4b and 0.138/0.092 µM for 4c. Additionally, with IC50 values of 0.138 and 0.193 M, respectively, 4b and 4c had the greatest DHFR inhibitory activity that was comparable to methotrexate. In the MCF7 breast cancer cell line, they caused arrest at the S phase of the cell cycle and exhibited apoptosis induction activity. With restored caspase-3 immunoexpression, the anti-breast cancer assay performed in vivo of 4b and 4c demonstrated a substantial decrease in tumor volume. Results from molecular modeling were in agreement with biological assays proving the importance of the 3-caynopyridine, two substituted phenyl rings attached to central pyridine ring, and propoxy side chain moieties for binding with the receptors. As 4c works by inhibiting both EGFR/HER2 kinase, DHFR enzymes, in addition to cellular apoptosis, it could be viewed as a model of compounds possessing a multi-targeting anticancer activity. Collectively, compounds 4b and 4c might represent prototypes for further development as anticancer molecules.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , Receptores ErbB , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose , Inibidores de Proteínas Quinases , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
3.
Mol Pharmacol ; 104(5): 187-194, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567782

RESUMO

Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.


Assuntos
Tecido Adiposo Marrom , Nefropatias , Humanos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Obesidade/complicações , Obesidade/metabolismo , Termogênese , Inflamação/complicações , Inflamação/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Eur J Med Chem ; 253: 115333, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031526

RESUMO

In accordance with WHO statistics, leishmaniasis is one of the top neglected tropical diseases, affecting around 700 000 to one million people per year. To that end, a new series of coumarin-1,2,3-triazole hybrid compounds was designed and synthesized. All new compounds exerted higher activity than miltefosine against L. major promastigotes and amastigotes. Seven compounds showed single digit micromolar IC50 values whereas three compounds (13c, 14b and 14c) displayed submicromolar potencies. A mechanistic study to elucidate the antifolate-dependent activity of these compounds revealed that folic and folinic acids abrogated their antileishmanial effects. These compounds exhibited high safety margins in normal VERO cells, expressed as high selectivity indices. Docking simulation studies on the folate pathway enzymes pteridine reductase and DHFR-TS imparted strong theoretical support to the observed biological activities. Besides, docking experiments on human DHFR revealed minimal binding interactions thereby highlighting the selectivity of these compounds. Predicted in silico physicochemical and pharmacokinetic parameters were adequate. In view of this, the structural characteristics of these compounds demonstrated their suitability as antileishmanial lead compounds.


Assuntos
Antiprotozoários , Leishmania , Animais , Humanos , Chlorocebus aethiops , Cumarínicos/química , Pteridinas/farmacologia , Triazóis/farmacologia , Triazóis/química , Células Vero
5.
BMC Chem ; 17(1): 31, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024940

RESUMO

In this work, the binding mechanism between donepezil (DNP) and bovine serum albumin (BSA) was established using several techniques, including fluorimetry, UV- spectrophotometry, synchronous fluorimetry (SF), fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET) besides molecular docking study. The fluorescence quenching mechanism of DNP-BSA binding was a combined dynamic and static quenching. The thermodynamic parameters, binding forces, binding constant, and the number of binding sites were determined using a different range of temperature settings. Van't Hoff's equation was used to calculate the reaction parameters, including enthalpy change (ΔHο) and entropy change (ΔSο). The results pointed out that the DNP-BSA binding was endothermic. It was shown that the stability of the drug-protein system was predominantly due to the intermolecular hydrophobic forces. Additionally, the site probing method revealed that subdomain IIA (Site I) is where DNP and BSA's binding occurs. This was validated using a molecular docking study with the most stable DNP configuration. This study might help to understand DNP's pharmacokinetics profile and toxicity as well as provides crucial information for its safe use and avoiding its toxicity.

6.
J Med Chem ; 66(7): 4565-4587, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36921275

RESUMO

Structural modifications of the antibacterial drug nitrofurantoin were envisioned, employing drug repurposing and biology-oriented drug synthesis, to serve as possible anticancer agents. Eleven compounds showed superior safety in non-cancerous human cells. Their antitumor efficacy was assessed on colorectal, breast, cervical, and liver cancer cells. Three compounds induced oxidative DNA damage in cancer cells with subsequent cellular apoptosis. They also upregulated the expression of Bax while downregulated that of Bcl-2 along with activating caspase 3/7. The DNA damage induced by these compounds, demonstrated by pATM nuclear shuttling, was comparable in both MCF7 and MDA-MB-231 (p53 mutant) cell lines. Mechanistic studies confirmed the dependence of these compounds on p53-mediated pathways as they suppressed the p53-MDM2 interaction. Indeed, exposure of radiosensitive prostatic cancer cells to low non-cytotoxic concentrations of compound 1 enhanced the cytotoxic response to radiation indicating a possible synergistic effect. In vivo antitumor activity was verified in an MCF7-xenograft animal model.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Humanos , Feminino , Nitrofurantoína/farmacologia , Proteína Supressora de Tumor p53/genética , Reposicionamento de Medicamentos , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Biologia , Linhagem Celular Tumoral
7.
J Enzyme Inhib Med Chem ; 36(1): 669-684, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33618602

RESUMO

The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antiulcerosos/farmacologia , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Úlcera Gástrica/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antiulcerosos/síntese química , Antiulcerosos/química , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Modelos Animais de Doenças , Edema/induzido quimicamente , Feminino , Formaldeído , Humanos , Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Modelos Moleculares , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Células THP-1 , Tiazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia
8.
Curr Med Chem ; 28(11): 2260-2300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32867639

RESUMO

Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


Assuntos
Doenças Metabólicas , Neoplasias , Araquidonato 15-Lipoxigenase , Ciclo-Oxigenase 2 , Humanos , Ligantes , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , PPAR gama
9.
Eur J Med Chem ; 200: 112439, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485532

RESUMO

Cancer is a multifactorial disorder involving multiplicity of interrelated signaling pathways and molecular targets. To that end, a multi-target design strategy was adopted to develop some 1,2,3-triazoles hybridized with some pharmacophoric anticancer fragments, as first-in-class simultaneous inhibitors of COX-2, 15-LOX and tumor associated carbonic anhydrase enzymes. Results revealed that compounds 5a, 5d, 8b and 8c were potent inhibitors of COX-2 and 15-LOX enzymes. COX-2 inhibitory activity was further demonstrated by the inhibition of the accumulation of 6-keto-PGF1α, a metabolite of COX-2 products in two cancer cell lines. The sulfonamide bearing derivatives 5d and 8c were effective nanomolar and submicromolar inhibitors of tumor associated hCA XII isoform, respectively. Strong to moderate inhibitory activities were observed in the in vitro antiproliferative assay on lung (A549), liver (HepG2) and breast (MCF7) cancer cell lines (IC50 2.37-28.5 µM) with high safety margins on WI-38 cells. A cytotoxic advantage of CA inhibition was observed as an increased activity against tumor cell lines expressing CA IX/XII. Further mechanistic clues for the anticancer activities of compound 5a and its sulfonamide analog 5d were derived from induction of cell cycle arrest at G2/M phase. They also triggered apoptosis via increasing expression levels of caspase-9 and Bax together with suppressing that of Bcl-2. The in vitro anti-tumor activity was reflected as reduced tumor size upon treatment with 8c in an in vivo cancer xenograft model. Docking experiments on the target enzymes supported their in vitro data and served as further molecular evidence. In silico calculations and ligand efficiency indices were promising. In light of these data, such series could offer new structural insights into the understanding and development of multi-target COX-2/15-LOX/hCA inhibitors for anticancer outcomes.


Assuntos
Antineoplásicos/farmacologia , Araquidonato 15-Lipoxigenase/metabolismo , Anidrases Carbônicas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
10.
Bioorg Chem ; 96: 103610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028062

RESUMO

TB continues to be a leading health threat despite the availability of powerful anti-TB drugs. We report herein the design and synthesis of various hybrid molecules comprising pyrazine scaffold and various formerly identified anti-mycobacterial moieties. Thirty-one compounds were screened in vitro for their activity against Mycobacterium tuberculosis H37Rv strain using MABA assay. The results revealed that six compounds (8a, 8b, 8c, 8d, 14b and 18) displayed significant activity against Mtb with MIC values ≤6.25 µg/ml versus 6.25 µg/ml for pyrazinamide. The most active compounds were then assessed for their in vitro cytotoxicity against PBMC normal cell line using MTT assay and showed SI > 200. Several in silico studies have been carried out for target fishing of the novel compounds such as shape-based similarity, pharmacophore mapping and inverse docking. Based on this multi-step target fishing study, we suggest that pantothenate synthetase could be the possible target responsible for the action of these compounds. The most active compounds were then successfully docked into the active site of pantothenate synthetase enzyme with favorable binding interactions. In addition, in silico prediction of physicochemical, ADMET and drug-like properties were also determined indicating that compounds 8b, 8c and 8d are promising candidates for the development of new anti-TB agents with enhanced activity and better safety profile.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinas/química , Pirazinas/farmacologia , Animais , Antituberculosos/farmacocinética , Células CACO-2 , Simulação por Computador , Cães , Humanos , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Pirazinas/farmacocinética , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
11.
Eur J Med Chem ; 167: 562-582, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818268

RESUMO

In search for effective multi-targeting drug ligands (MTDLs) to address low-grade inflammatory changes of metabolic disorders, we rationally designed some novel glitazones-like compounds. This was achieved by incorporating prominent pharmacophoric motifs from previously reported COX-2, 15-LOX and PPARγ ligands. Challenging our design with pre-synthetic docking experiments on PPARγ showed encouraging results. In vitro tests have identified 4 compounds as simultaneous partial PPARγ agonist, potent COX-2 antagonist (nanomolar IC50 values) and moderate 15-LOX inhibitor (micromolar IC50 values). We envisioned such outcome as a prototypical balanced modulation of the 3 inflammatory targets. In vitro glucose uptake assay defined six compounds as insulin-sensitive and the other two as insulin-independent glucose uptake enhancers. Also, they were able to induce PPARγ nuclear translocation in immunohistochemical analysis. Their anti-inflammatory potential has been translated to effective inhibition of monocyte to macrophage differentiation, suppression of LPS-induced inflammatory cytokine production in macrophages, as well as significant in vivo anti-inflammatory activity. Ligand co-crystallized PPARγ X-ray of one of MTDLs has identified new clues that could serve as structural basis for its partial agonism. Docking of the most active compounds into COX-2 and 15-LOX active sites, pinpointed favorable binding patterns, similar to those of the co-crystallized ligands. Finally, in silico assessment of pharmacokinetics, physicochemical properties, drug-likeness and ligand efficiency indices was performed. Hence, we anticipate that the prominent biological profile of such series will rationalize relevant anti-inflammatory drug development endeavors.


Assuntos
Anti-Inflamatórios/química , Desenho de Fármacos , Tiazolidinedionas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Araquidonato 15-Lipoxigenase/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , PPAR gama/agonistas , Ligação Proteica , Tiazolidinedionas/química , Tiazolidinedionas/uso terapêutico
12.
Eur J Med Chem ; 167: 161-186, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771604

RESUMO

Neuroinflammation and cholinergic deficit are key detrimental processes involved in Alzheimer's disease. Hence, in the search for novel and effective treatment strategies, the multi-target-directed ligand paradigm was applied to the rational design of two series of new hybrids endowed with anti-inflammatory and anticholinesterase activity via triple targeting properties, namely able to simultaneously hit cholinesterases, cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX) enzymes. Among the synthesized compounds, triazoles 5b and 5d, and thiosemicarbazide hybrid 6e emerged as promising new hits, being able to effectively inhibit human butyrylcholinesterase (hBChE), COX-2 and 15-LOX enzymes with a higher inhibitory potency than the reference inhibitors tacrine (for hBChE inhibition), celecoxib (for COX-2 inhibition) and both NDGA and Zileuton (for 15-LOX inhibition). In addition, compound 6e proved to be a submicromolar mixed-type inhibitor of human acetylcholinesterase (hAChE). The anti-neuroinflammatory activity of the three most promising hybrids was confirmed in a cell-based assay using PC12 neuron cells, showing decreased expression levels of inflammatory cytokines IL-1ß and TNF-α. Importantly, despite the structural resemblance to tacrine, they showed ideal safety profiles on hepatic and murine brain cell lines and were safe up to 100 µM when assayed in PC12 cells. All three hybrids were also predicted to have superior BBB permeability than tacrine in the PAMPA assay, and good physicochemical properties, drug-likeness and ligand efficiency indices. Finally, molecular docking studies highlighted key structural elements impacting selectivity and activity toward the selected target enzymes. To the best of our knowledge, compounds 5b, 5d and 6e are the first balanced, safe and multi-target compounds hitting the disease at the three mentioned hubs.


Assuntos
Acetilcolina/deficiência , Doença de Alzheimer/tratamento farmacológico , Inflamação/tratamento farmacológico , Neurônios/patologia , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Inibidores da Colinesterase/química , Inibidores de Ciclo-Oxigenase 2/química , Desenho de Fármacos , Humanos , Inibidores de Lipoxigenase/química , Camundongos , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Células PC12 , Ratos , Semicarbazidas/química , Semicarbazidas/farmacologia , Triazóis/química , Triazóis/farmacologia
13.
Eur J Med Chem ; 151: 585-600, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29656201

RESUMO

Leishmaniasis is a devastating tropical disease with limited therapeutic options. Depending on recently reported active anti-leishmanial compounds, we designed and synthesized a series of click modifiable 1,2,3-triazole and thiosemicarbazone hybrids. Most of the synthesized compounds showed comparable to superior activity to a well-established anti-leishmanial drug miltefosine. Compounds 2 and 10a showed nanomolar IC50s against promastigotes of L. major (227.4 nM and 140.3 nM respectively, vs 7.8 µM for miltefosine). Their antiamastigote IC50s were 1.4 µM and 1 µM respectively, which are 6 and 8 times the activity of miltefosine (IC50 8.09 µM). Folic and folinic acids reversed the anti-leishmanial effects of compounds 2 and 10a and hence we anticipate they act via an anti-folate mechanism. They exhibited better safety profiles than that of miltefosine on VERO cell lines. Also they were relatively safe on experimental mice when administered via oral and parenteral routes. Docking experiments on PTR1 identified preferential binding interactions and docking scores. Finally, drug-likeness and ligand efficiency were assessed indicating that both 2 and 10a are promising hits and/or leads as anti-leishmanial chemotherapeutic agents.


Assuntos
Leishmania major/efeitos dos fármacos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Animais , Chlorocebus aethiops , Química Click , Desenho de Fármacos , Humanos , Leishmania major/enzimologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Células Vero
14.
Future Med Chem ; 9(12): 1413-1450, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28771047

RESUMO

AIM: Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. RESULTS: This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. CONCLUSION: This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Desenho de Fármacos , Edema/tratamento farmacológico , Fungos/efeitos dos fármacos , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
15.
Med Chem ; 11(4): 407-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25478930

RESUMO

This work describes the synthesis of new series of compounds derived from methyl pyridyl- 2,4-dioxobutanoates that contain pyridine ring attached to substituted bioactive heterocyclic moieties in order to investigate their preliminary in vitro antibacterial and antifungal activities. The results revealed that most of the tested compounds exhibited significant activity against P. aeruginosa. and E. coli. They also displayed considerable activity against S. aureus and B. subtilis. On the other hand, the compounds displayed moderate antifungal activity.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Butiratos/síntese química , Piridinas/síntese química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Butiratos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piridinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
16.
Med Chem ; 10(3): 318-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24032466

RESUMO

A series of substituted pyridinylpyrazole (or isoxazole) derivatives were synthesized and evaluated for their anti-inflammatory (AI) activity using formalin-induced paw edema bioassays. Their inhibitory activities of cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) were also determined. The analgesic activity of the same compounds was evaluated using rat-tail withdrawal technique. Their antipyretic activity was also evaluated. The results revealed that compounds 4a,b, 6a, 8a, 14c and 15a exhibited significant AI and analgesic activities. Compounds 5a, 6a and 8a displayed good antipyretic activity. Compounds 14c and 15a showed good COX-2 inhibitory activity and weak inhibition of COX-1. Additionally, the most active compounds were shown to have a large safety margin (ALD50 >300-400 mg / Kg) and minimal ulcerogenic potentialities when administered orally at a dose of 300 mg/Kg. Docking studies for 14c and 15a with COX-2 showed good binding profile. Antimicrobial evaluation proved that most of the compounds exhibited distinctive activity against the gram negative bacteria, P. aeruginosa and E coli.


Assuntos
Analgésicos/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antipiréticos/farmacologia , Desenho de Fármacos , Isoxazóis/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Analgésicos/administração & dosagem , Analgésicos/síntese química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/síntese química , Antipiréticos/administração & dosagem , Antipiréticos/síntese química , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Formaldeído , Isoxazóis/síntese química , Isoxazóis/química , Masculino , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...